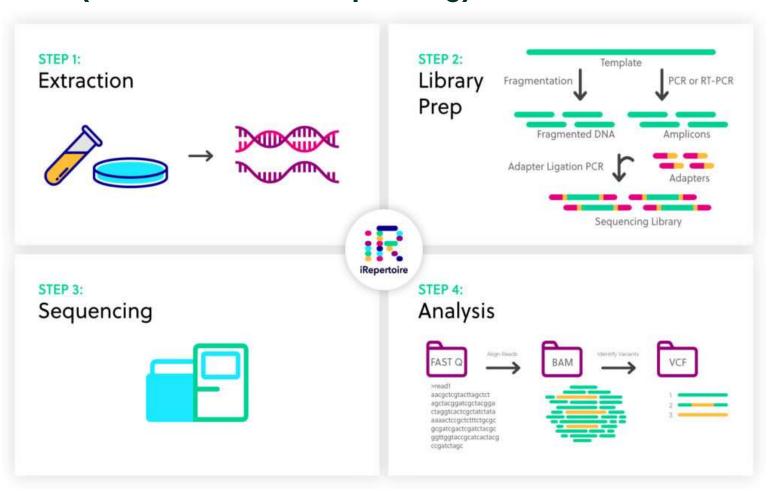
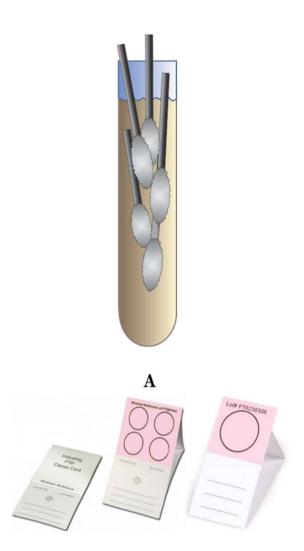
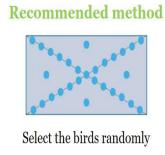

Combating Unknown Enemies with the Help of Molecular Diagnostics

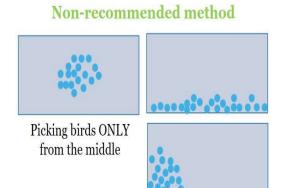
LEMIERE Stephane, DVM, ECPVS

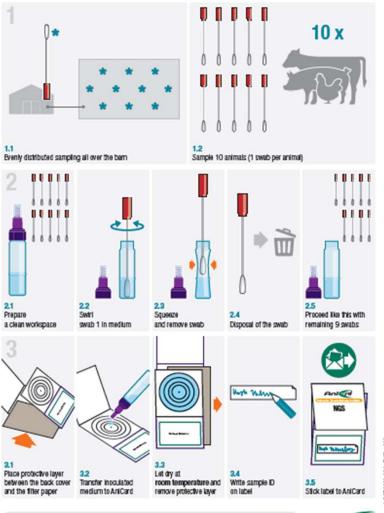

NGS (Next Generation Sequencing)


RNA sequencing is key to diagnostics

- RNA is produced by all viruses and bacteria
- Total random RNA sequencing does not require a hypothesis
- Sequencing provides unsurpassed specificity
- Proportion of reads may provide a "semi quantitative" representation
- If random, it provides a representation of "all" agents present
- May detect mixed infections that are relevant to clinical diagnosis


NGS (Next Generation Sequencing)




B Lot No. DB96790 Lot No. DB94539

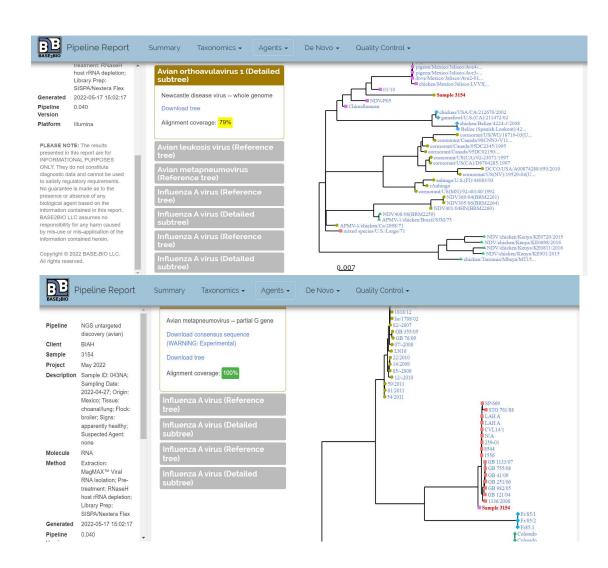
QC of FTA cards. These are Among the key aspects to pay attention to during sample preparation in the field. Panels A and D illustrates FTA cards (from SEPRL control sample and BAH field sample, respectively) that are properly spotted (with the recommended volumes of samples, i.e., approximately 125 μ L) and sufficiently dried. Panel B illustrates non-indicating FTA card in which it is difficult to locate where the samples were spotted or verify if sufficient sample volumes were spotted. Panel E shows an insufficiently dried (damp) FTA card spotted with a field sample, which are difficult to punch out discs for subsequent extraction of nucleic acids.

Bursa sampling

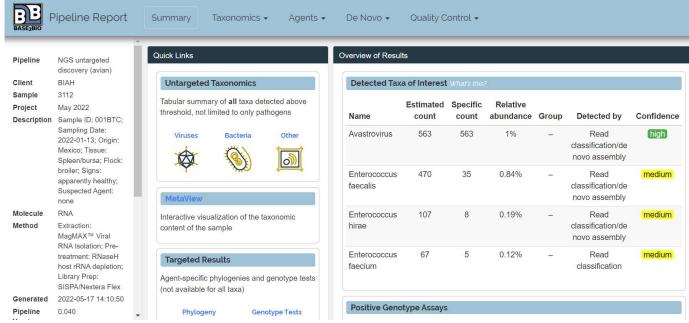


Spleen sampling

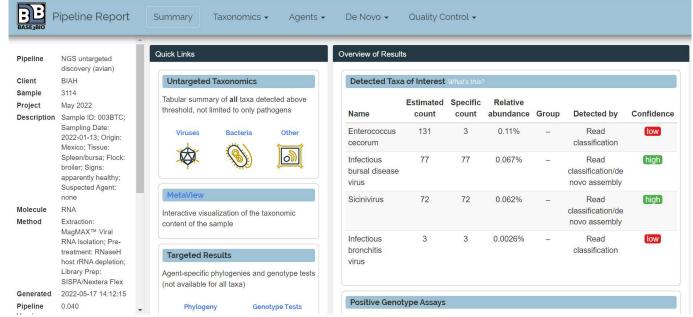
Broiler flock with respiratory clinical signs, increased mortality, some with nervous signs. The Vet in charge is convinced this is a VVND case and is assuming the mortality Is associated with his vaccination program vs ND. He is thinking on changing the vaccination program vs ND.


To unveil hidden pathogens:

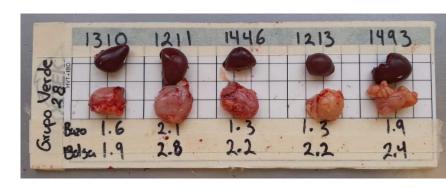
To unveil hidden pathogens:

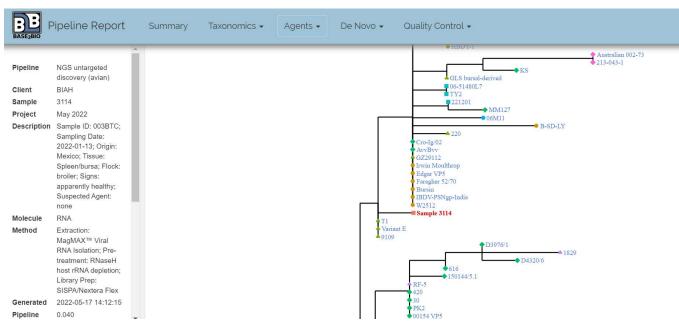

Some nervous signs Torticolis caused by SHS

To unveil hidden pathogens:


Broiler flock which experienced a curve of mortality starting the second week of age. Lesions in liver, kidneys and diarrhea are the main findings. Vet is suspecting on Malabsorption syndrome caused by Reovirus and is asking to include the Reo fraction vs malabsorption in the breeders.

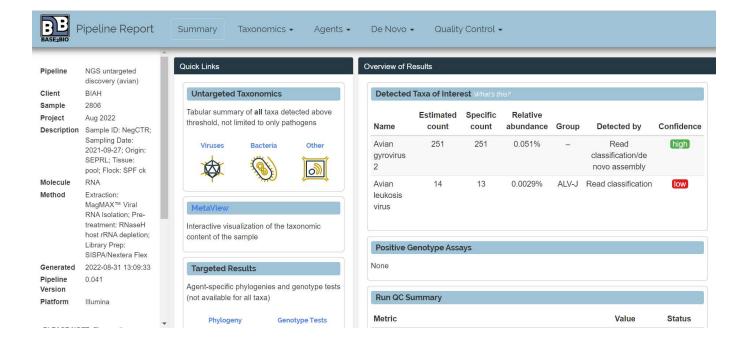
To measure vaccination program efficacy:


Broiler flock with normal mortality and no clinical signs. The Vet is asked to take samples for PCR testing before slaughter age. The report is positive to IBD Virus. The Vet is recommended to modify the vaccination program.

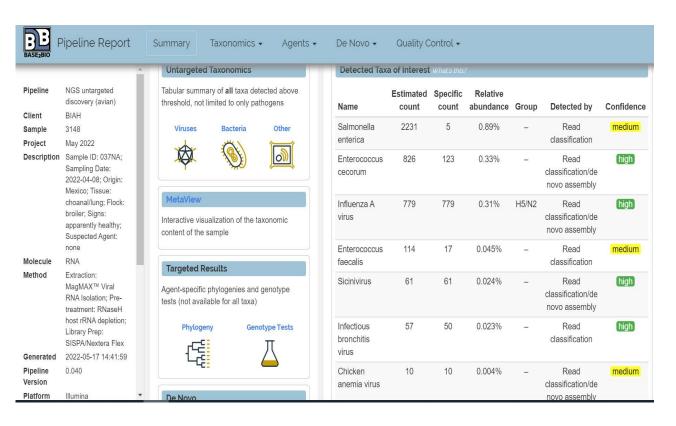


To measure vaccination program efficacy:

IBD variant E



To detect infectious causes of immune suppression:


Causes of bursal athrophy

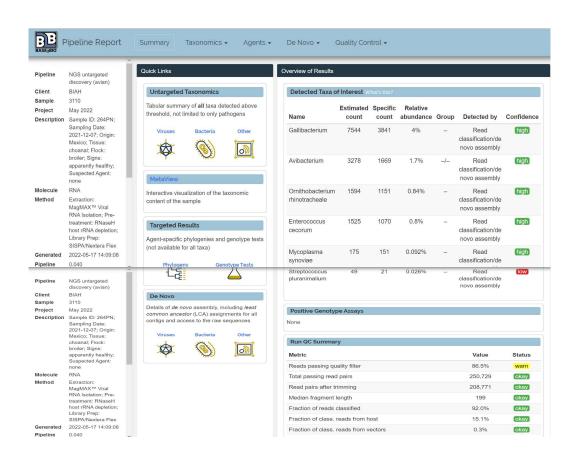
Not all is about IBD

CAV Reo Adeno Marek Al VVND Mycotoxins Stress

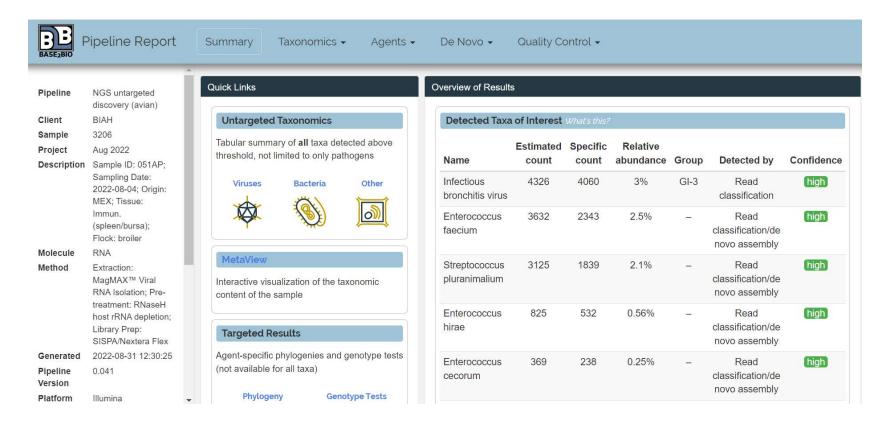
To investigate mixed infections:

Avian Influenza + Infectious Bronchitis

+


CAV

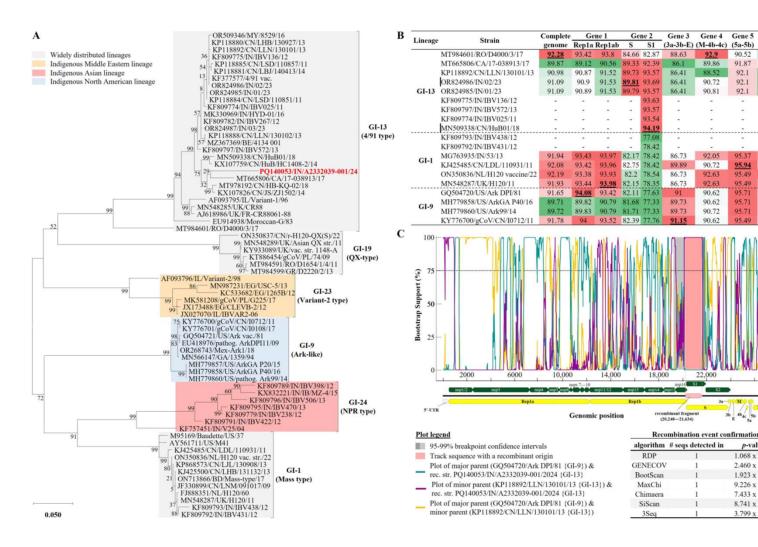
+


Bacteria

To investigate mixed infections:

To understand the epidemiology:

To understand the epidemiology:


Coding-complete genome sequence of a GI-13 infectious bronchitis virus from commercial chicken in India

Henry M. Kariithi, 1 Jeremy D. Volkening, 2 Claudio L. Afonso, 2 Mohamed Helmy, 3 Pushparaj P. Chaudhari, 4 Eduardo L. Decanini 3

AUTHOR AFFILIATIONS See affiliation list on p. 3.

ABSTRACT Infectious bronchitis virus (IBV) causes a highly contagious, acute upper respiratory disease in chickens characterized by nasal discharge, coughing, and rales. Here, the complete genome sequence of a recombinant GI-13 IBV strain ck/IN/A2332039-001/24 was sequenced from a choanal sample of a commercial broiler chicken in India using nontargeted next-generation sequencing.

To understand the epidemiology:

Gene 2

86.41

86.41

86.41

90,56 89.33 92.39

82.17 78.42

82.2 78.54

93.93

Gene 3 Gene 4 Gene 5 Gene 6

90.72

90.81

90.62

90.62

90.72

Recombination event confirmation

algorithm # seqs detected in

RDP

GENECOV

BootScan

MaxChi

Chimaera

SiScan

90.52

91.87 93.17

92.1

92.1

92.1

95.94 93.5

95.71 93.33

1.068 x 10 -74

2.460 x 10 -93

1.923 x 10-18

9.226 x 10-26

7.433 x 10 -21

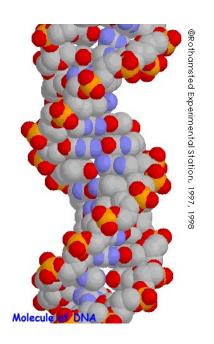
8.741 x 10 -37

3.799 x 10-13

93.25

93.33

95 49


95.71

95.71

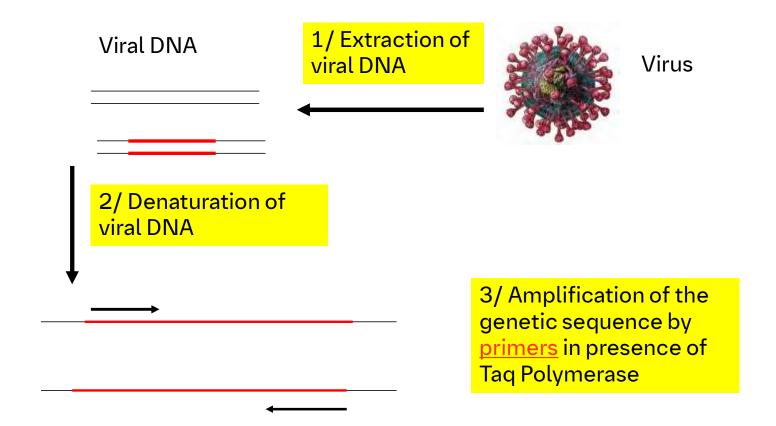
Targeted PCR & Sequencing

PCR (Polymerase Chain Reaction)

Gene are on nucleic acid chains (DNA, RNA)

DNA

DNA viruses (Herpesvirus, Adenovirus, ...)
Bacteria (plasmids, nucleus)
Eucaryotes (nucleus)


RNA

RNA viruses (Ortho- & Para-myxovirus, Metapneumovirus, ...)

Bacteria

Eucaryotes: RNAm, RNAt, RNAr

PCR (Polymerase Chain Reaction)

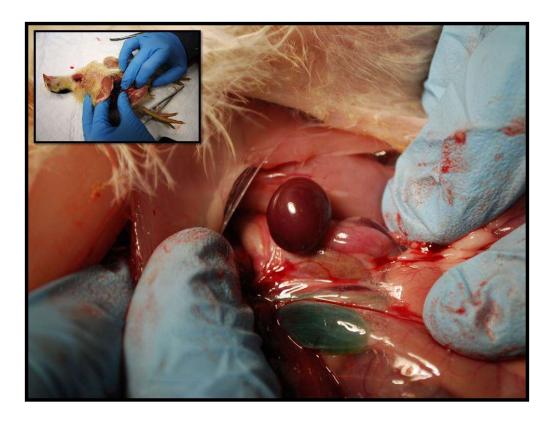
PCR (Polymerase Chain Reaction)

The «billion» amplified genes are then detectable using two types of PCR

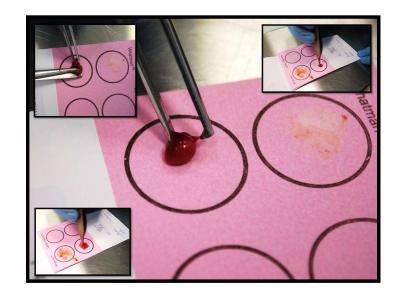
Conventional PCR

Amplification **then** reveal by **Electrophoresis**

Real – Time PCR


Amplification and reveal simultaneously by

Fluorescence reads

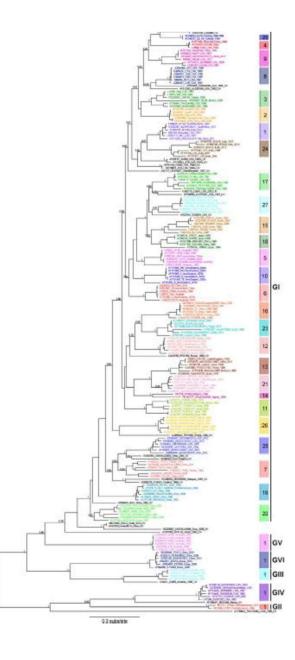


FTA cards

FTA cards

FTA cards

FTA cards


Infectious Bronchitis

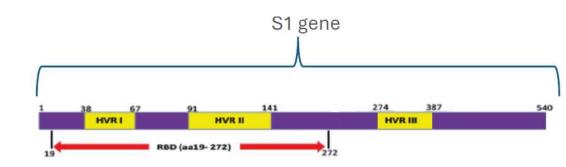
Genotypes GI – GVI (nowadays GIX or GX)

<u>Differentiation into lineages</u>:

GI: 27 lineages (e.g.GI-1: Mass; GI-13: 793b; ...)

~30 lineages to date

[Valastro et Al, 2016]

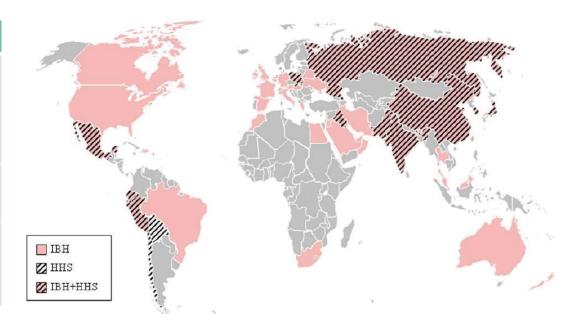

Infectious Bronchitis

Screening PCR (for Avian Coronavirus)

Typing PCRs

Sequencing (partial S1 gene) including most variable regions

Next generation sequencing (IBV directed - whole S1 gene)


Table 2. Sequence alignment of hypervariable regions (HVRs) amino acid sequences for four isolates in this study compare to their parental origin 4/91 genotype (793/B serotype).

Strain	HVR1 (60-88)	HVR2 (115-140)	HVR3 (275-292)
4/91	VSVSDCTAGTFYESYNISAASVAMT	FKSQQGSCPLTGMIPQNHIRISA	TFTNVSNASPNSGGVD
4/91	VPPA	MRS	TF
CR88	G. A	N.L	S
SA/1/2019	AG S K	Y	
SA/2/2019	AG F A	L	
SA/3/2019	AGE F S A		
SA/4/2019	AGQS		

A dot indicates an identical amino acid.

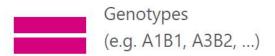
Fowl Adenovirus

Disease	Mostly types
Inclusion Body Hepatitis	FAdV-2, -8a, -8b (species E) FAdV-11 (species D)
Gizzard Erosions	FAdV-1 (species A)
(Hepatitis-) Hydropericardium Syndrome	FAdV-4 (species C)

Fowl Adenovirus

Screening PCR

Determination of serotype by sequencing of Hexon gene


Infectious Bursal Disease

VP2 (segment A)		
A1	Classical virulent/attenuated	
A2	US antigenic	
A3	Very virulent	
A4	dIBDV	
A5	Mexican	
A6	Italian	
A7	Early Australian	
A8	Australian variant	
A9	Portugal	
A0	Serotype 2	

VP1 (segment B)		
B1	Classical like (incl. serotype 2)	
B2	Very virulent-like	
B3	Early Australian-like	
B4	Polish/Tanzanian	
B5	Nigerian	

Infectious Bursal Disease

Screening PCR

Typing PCRs (A1, A3, A7)

Partial VP1 and VP2 sequencing

IBDV directed NGS for whole VP1&VP2 sequencing

Consider recombinant vaccine strains (HVT vector vaccines or DIVA PCRs)

Marek's Disease

Meleagrid aplhaherpesvirus 1 (= Herpesvirus of turkey (HVT) non-pathogenic)

Gallid alphaherpesvirus 3 (non-pathogenic) – SB1

Gallid alphaherpesvirus 2 (= Marek's Disease Virus)

Meq protein has a key role in oncogenicity, is involved in neurovirulence, is relevant for virulence among others: proline rich repeats (PRRs; 4-proline stretches)

The more proline repeats the lower the virulence

Marek's Disease

Screening PCR

DIVA PCR (CVI988 – RN1250 possible with CVI988 detection system)

Sequencing of meq gene for number of proline repeats

HVT recombinant vaccine strains: HVT-based PCRs (HVT screening or DIVA PCRs based on inserts or overlapping genetic sequence 'unique fingerprint of the construct')

Possible qPCR with proper quantification at day 21 – Gimeno's Technique

Patho-genotyping?

Jaganathan et al. BMC Veterinary Research (2015) 11:219 DOI 10.1186/s12917-015-0537-z

RESEARCH ARTICLE

Open Access

Observation of risk factors, clinical manifestations and genetic characterization of recent Newcastle Disease Virus outbreak in West Malaysia

Seetha Jaganathan^{1,3,4}, Peck Toung Ooi^{1*}, Lai Yee Phang², Zeenathul Nazariah Binti Allaudin¹, Lai Siong Yip⁵, Pow Yoon Choo⁵, Ban Keong Lim⁵, Stephane Lemiere⁶ and Jean-Christophe Audonnet⁶

Background: Newcastle disease virus remains a constant threat in commercial poultry farms despite intensive vaccination programs. Outbreaks attributed to ND can escalate and spread across farms and states contributing to major economic loss in poultry farms.

Results: Phylogenetic analysis in our study showed that eleven of the samples belonged to genotype VIId. All farms were concurrently positive with two immunosuppressive viruses; Infectious Bursal Disease Virus (IBDV) and Marek's Disease Virus (MDV). Amino acid sequence analysis confirmed that eleven of the samples had sequence motifs for velogenic/mesogenic strains; three were lentogenic.

Conclusion: In conclusion, no new NDV genotype was isolated from the 2011 NDV outbreak. This study suggests that the presence of other immunosuppressive agents such as IBD and MDV could have contributed to the dysfunction of the immune system of the chickens, causing severe NDV outbreaks in 2011. Risk factors related to biosecurity and farm practices appear to have a significant role in the severity of the disease observed in affected farms.

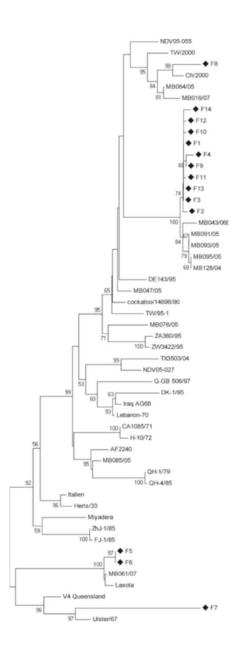
Patho-genotyping?

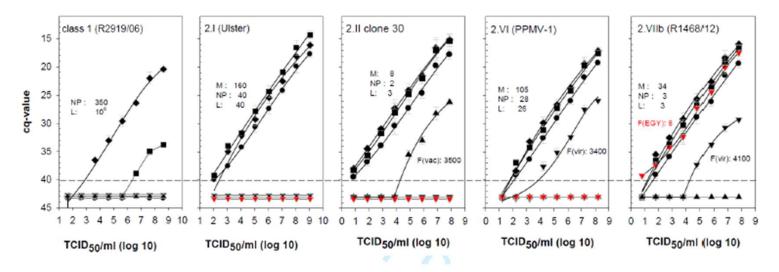
Fig. 1 Clinical signs observed from the outbreak **a** A typical torticollis is shown. These symptoms normally occur 7 to 10 days after a complaint of high mortality is seported by in severely affected birds, mid swotlen head and dyspine with profuse secretions in the traches were found **c** & d Hemonthagic & recross of intentines especially the carecial torists & peyer's parches were found, **e** Upon PM, the traches was severely congested and late in the disease stages pericarditis, peritheparitis and caseous air sacculitis were observed. If Proventicular hemonthages were consistent **g**, th & it Busia atrophy was also commonly found in the outbreak. The cut surfaces of the bursa were hemonthagic – quite atypical from ND infection which prompted us to book for other infectious agents. Not shown above was atrophic thymus.

Table 7 The F cleavage site and it's pathotypes from the Malaysian isolates

Isolate	Genbank® accession no	F cleavage site	Genotype	Pathotype	Source
F1	JN613112	RRRKRF	VIId	Velogenic/Mesogenic	This study
F2	JN613113	RRRKRF	VIId	Velogenic/Mesogenic	This study
F3	JN613114	RRRKRF	VIId	Velogenic/Mesogenic	This study
F4	JN613115	RRRKRF	VIId	Velogenic/Mesogenic	This study
F5	JN613116	GRQGRL	II	Lentogenic	This study
F6	JN613117	GRQGRL	II	Lentogenic	This study
F7	JN613118	GKQGRL	1	Lentogenic	This study
F8	JN613119	RRRKRF	VIId	Velogenic/Mesogenic	This study
F9	JN613120	RRRKRF	VIId	Velogenic/Mesogenic	This study
F10	JN613121	RRRKRF	VIId	Velogenic/Mesogenic	This study
F11	JN613122	RRRKRF	VIId	Velogenic/Mesogenic	This study
F12	JN613123	RRRKRF	VIId	Velogenic/Mesogenic	This study
F13	JN613124	RRRKRF	VIId	Velogenic/Mesogenic	This study
F14	JN613125	RRRKRF	VIId	Velogenic/Mesogenic	This study

Patho-genotyping?


Table 5 Zootechnical results, clinical and necropsy findings


Risk factor	Affected farms	Negative
Age of first occurrence of disease	15.9 ^a	28.0ª
Age of clinical and necropsy examination	24.8 ^a	32.5ª
Mortality at grow-out, %	32.3 % ^a	4.5 % ^b
Presence of respiratory disease	100 % ^a	100 %a
Presence of enteric disease	100 % ^a	0 % ^b
Torticolis and neurological signs	91.7 % ^a	0 % ^b
Haemorrhages in more than 1 visceral organ	83.3 % ^a	0 % ^b
Thymus atrophy	100 % ^a	0 % ^b
Bursal atrophy	75 % ^a	50 % ^b
Ascites	8.3 % ^a	50 % ^a
Air-sacculitis, perihepatitis and peritonitis	16.7 % ^a	50 % ^b
Clouded air sacs	50 % ^c	100 % ^d

Note: $^{\rm ab}$ Values in different columns bearing different superscripts are significantly different (P < 0.05), $^{\rm cd}$ Values in different columns bearing different superscripts are significantly different (P < 0.01)

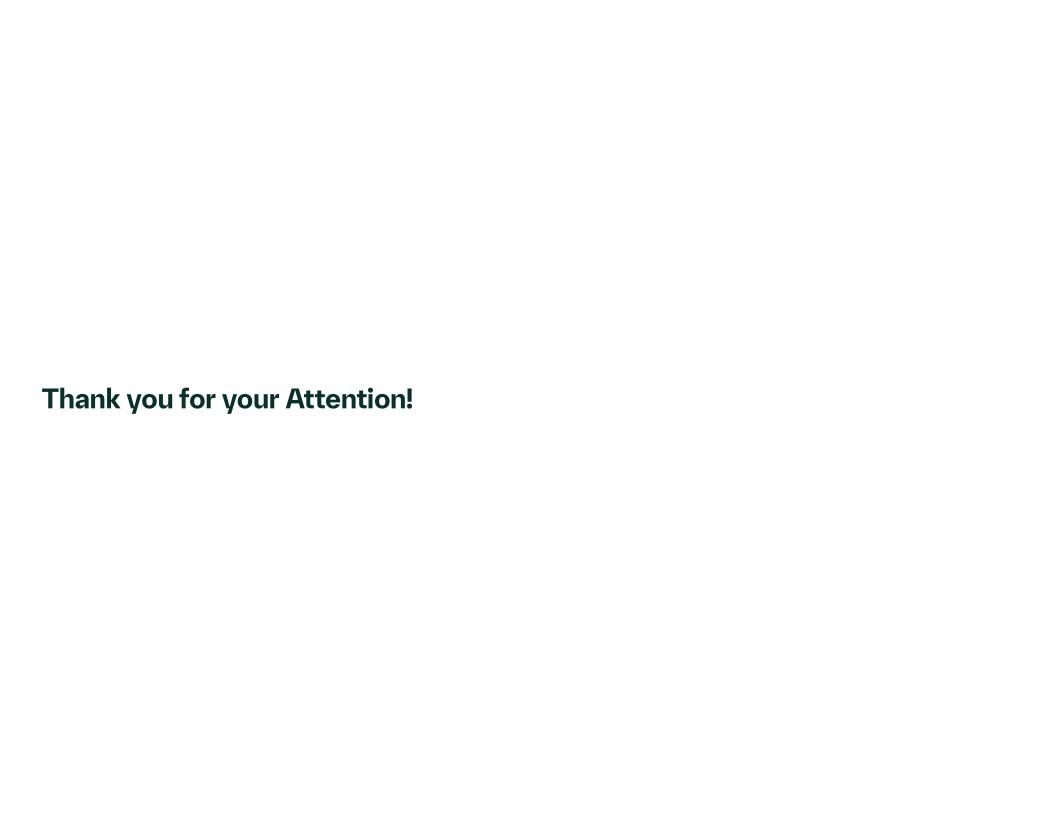
Table 6 Detection of infectious agents concurrently with NDV positive samples

Presence of concurrent infectious agent in disease farms	Frequency of detection	
IBD	83.0 %	
MD	83.0 %	
IBD+MD	75.0 %	
MD Serotype 1	58.0 %	
MD Serotype 2	75.0 %	
MD Serotype 3	67.0 %	

- Limited sensitivity of pathotype specific RT-qPCR
- Adapted reagents close gap in sensitivity between generic and pathotype specific F-RT-qPCR

Special case of WOAH list A Avian Influenza – HPAI H5Nx

Example of surveillance program (EU – France – Vaccinated Duck Population)


The objective of surveillance is to **ensure that there's no viral circulation amongst the vaccinated flocks**, This is to be made in all epidemiological units (one epidemiological unit is one farm)

1/ Event based surveillance is to ensure earliest detection of viral circulation, any abnormal behavior or clinical signs are to be declared without delay to veterinarian.

2/Enhanced passive surveillance: The sampling protocol involves the taking by the farmer or a technical worker of **tracheal or oropharyngeal swabs** from recently deceased birds up to a maximum of **five dead birds per week** to perform RT-PCR.

3/Active surveillance: objective is to detect low level circulation, to be made by an official vet, is based on a clinical examination, with the evaluation of the zoo-technical criteria, completed with a monthly virological surveillance. samples are taken from 60 vaccinated birds for PCR and 20 samples for NP ELISA serology.

HPAI post-vaccination enhanced surveillance and the serological survey		
Parameters	Enhanced passive surveillance	Active surveillance
Where?	The epidemiological unit	
Who?	Farmer or technical worker	Official veterinary
Frequency?	Weekly	Every 30 days: virological testing On batch completion: serological testing
How?	Swabs (tracheal/oropharyngeal) from 5 dead birds	Every 30 days : Swabs (tracheal/oropharyngeal) from 60 birds; At batch completion: blood samples from 20 birds
Testing?	Virological using M gene RT- PCR (If the result is positive, screening for H5/H7)	Virological using M gene RT-PCR (If the result is positive, screening for H5/H7) and NP ELISA serology
Type of laboratory?	A recognised laboratory	An approved laboratory

